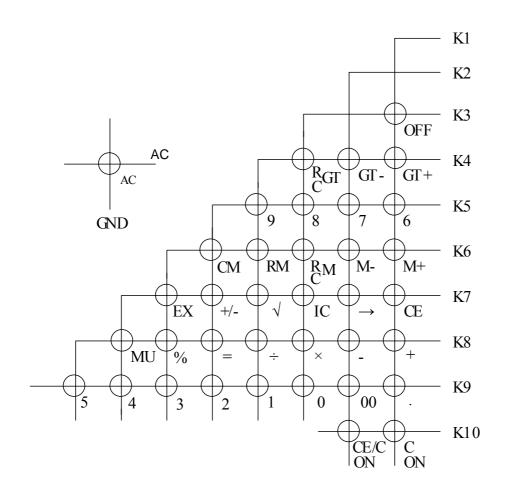
1、概述

十位/十二位计算器电路,可实现 10 位或 12 位运算和存贮功能,带"+、-、×、÷、="符号显示,由 1.5V 电源或太阳能电池供电,具有工作电压范围宽及功耗低的特点,可选择自动或手动断电功能,还可以选择在断电时是否保持存储器内容。其特点如下:


- 浮点功能(开关选择)
- 定点(0,1,2,3,4或6)和加点方式
- 前 "0" 与后 "0" 压缩
- 小数点及逗号显示
- 结果溢出标志 "E" (计算时产生)
- 寄存器溢出显示(当输入太多位时)
- 带 "+、-、×、÷、=" 符号显示
- 四项基本运算(+、-、×、÷)
- 存贮和累计存贮运算、百分比和 MU 运算
- 常数运算、平方根运算、连续运算
- 自动估算功能
- 取整功能
- 改变符号
- LCD 直接驱动
- 内部振荡时钟电路
- 内部键盘编码
- 电源电压范围宽(1.1~1.8V)
- 自动上电清零
- 开关选择实现 10 位或 12 位数字显示
- 封装形式: 软封

- 2、功能描述
- 2. 1、键盘描述
- ◆ "="键:完成已经键入的操作并且保持该操作的结果;完成幂/倒数运算。
- ◆ "×"键:输入被乘数,完成上次操作及显示结果。
- ◆ "÷"键:输入被除数;完成上次操作及显示结果。
- ◆ "+"键:输入被加数,完成上次操作及显示结果。
- ◆ "-"键:输入被减数,完成上次操作及显示结果。
- ◆ "+/-"键:对当前数据的符号位取反。
- ◆ "%"键:设置 %键的目的主要用于打折、税或利息运算。打折和税运算时,要求主量先输入,紧接着按 "×",然后输入百分值,按%后,得到折扣量或税,再按 "-"和 "="键,将主量减去折扣量或税。利息运算时,要求主量先输入,紧接着按 "×",然后输入百分值,按%后,得到利息,再按 "+"和 "="键,将主量加上利息。
- ◆ 上电/清除键(ON/C): 开机键,第一次按表示上电,显示" 0."; 在计算过程中按该键将清除除了 Memory、GT 寄存器、IC 计数器这 3 个存储器外的其他存储器中的数值。
- ◆ 上电/清除输入键 CE/C/ON: 开机键,第一次按表示上电,显示" 0."。在数字输入过程中第一次按将清除当前输入,第二次按将清除除了 Memory、GT 寄存器、IC 计数器外的其他寄存器中的数值。运算过程中,未发生运算错误时按该键可清除显示的运算结果;当发生粗略估算估算错误 1 时,第一次按,可清除" E"错误显示,第二次按可清除运算结果,并显示 0;当发生粗略估算错误 2 或者系统错误时,按该键将清除"E"错误显示,并显示 0,但并不清除 Memory、GT 寄存器和 IC 计数器。
- ◆ 清除输入键 CE: 在数字输入过程中按该键,将清除当前输入的所有数字(包括输入错误情形),显示 0, 并不清除上次输入。在运算过程中,发生粗略估算错误 1 时,按该键可清除 "E"错误显示但 并不能清除粗略估算结果。
- ◆ 关机 (OFF): 关机键, 按下 OFF 键后, 关闭显示。
- ◆ 平方根√:显示一个输入正数的平方根。
- ◆ M+: 把目前显示的值加在存储器中; 中断数字输入。
- ◆ M-: 从存储器内容中减去当前显示值; 中断数字输入。
- ◆ 调用存储器内容及清除键 RCM:
 - (1)第一次按把存储器内容调入输出寄存器。
 - (2) 第二次按清除存储器内容(连续按,中间不按其他键,如"="键)。
- ◆ GT+: 把目前显示的值放在存储器中; 中断数字输入。
- ◆ GT-: 从存储器内容中减去当前显示值; 中断数字输入。
- ◆ RC GT: 第一次按下,作为 RGT 键,传送 GT 存储器的内容到显示寄存器; 第二次按下作为 CGT 键清除 GT 存储器的内容
- ◆ 数字键(0~9): 第一次输入的值将清除显示,并且显示该输入值,接下去的输入将把显示值左移, 超过 12 位整数或 11 位小数的输入将被忽略,并显示错误标识 "E"。
- ◆ 移位键 (→): 删除最右边的数,并且将其余的数右移。

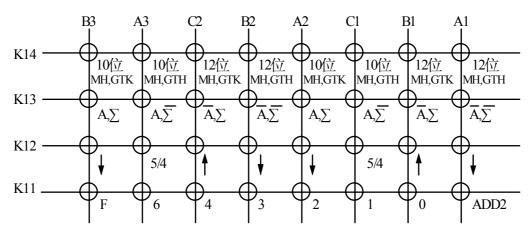
- ◆ 交换键 EX: 交换一次操作中的两个操作数。
- ◆ 项目计数键 IC: "+"、"M+"、"GT+"、"="将一个个的增加计数器的内容; "M-"、"GT-"将从计数器中减去 1,"-"将从计数器中减去 2。 其他按键无效。IC 计数器最大计数值为 999。
- ◆"."键:小数点输入,按下"."键后,后续输入的数字为小数位数字。
- ◆ "MU"键: MARK-UP运算键。

按下 "A+B MU", 执行 "100×(A+B)÷B"; 按下 "A-B MU", 执行 "100×(A-B)÷B"; 按下 "A×B MU", 执行 "A×(1+B÷100)"; 按下 "A÷B MU", 执行 "A÷(1-B÷100)。

2. 2、键盘矩阵

3、引脚描述与电特性

3.1、引脚描述


引脚	符号	功 能	属性
7177		74	7, 4 1
1	AC	复位,内置上拉	I
2-3	K1,K2	键输出	О
4-11	K3-K10	键输入/输出	I/O
12-15	K11-K14	键输入,内置条件上拉	I
16-18	COM1-COM3	LCD 公共驱动端	O
19-21	A1,B1,C1	LCD 段驱动端	О
22-24	A2,B2,C2	LCD 段驱动端	О
25-27	A3,B3,C3	LCD 段驱动端	О
28-30	A4,B4,C4	LCD 段驱动端	О
31-33	A5,B5,C5	LCD 段驱动端	О
34-36	A6,B6,C6	LCD 段驱动端	О
37-39	A7,B7,C7	LCD 段驱动端	О
40-42	A8,B8,C8	LCD 段驱动端	О
43-45	A9,B9,C9	LCD 段驱动端	О
46-48	A10,B10,C10	LCD 段驱动端	O
49-51	A11,B11,C11	LCD 段驱动端	O
52-54	A12,B12,C12	LCD 段驱动端	O
55-56	S1,S2	LCD 段驱动端	0
57	GND	电源负端	G
58-60	VA,VB,VPP	倍压端,外接倍压电容	-

3.2、极限参数

- Absolute Maximum Ratings

Item	Sym	Min.	Max.	Unit
Supply Voltage	VDD-VSS	-0.3	1.8	V
Input Voltage	V_{IN}	VSS-0.3	VDD+0.3	V
Storage Temperature	T_{STG}	-50	125	
Operation Temperature	T_OP	0	70	

2. 3、功能开关选择

K14: 运算位数和存储保留状态选择,当自动断电或按下 OFF 键时:存储保留 (MH);存储消除 (MK); GT 存储保留 (GTH); GT 存储消除 (GTK)。

K13: 选择自动断电模式和 GT 功能有无: 自动断电有 (A); 自动断电无 (\overline{A}); 有 GT 功能 (Σ); 无 GT 功能 ($\overline{\Sigma}$)。

K12: 进位选择开关。

K11: 定点或浮点方式选择。

2. 4、错误情形

◆ 错误检测

- a) 输入错误:连续输入的数据超过 12 位整数。
- b) 粗略估算错误 1: 四则运算的任意运算结果超过 12 位整数。
- c) 粗略估算错误 2: Memory 运算或 GT 运算结果超过 12 位整数。
- d) 系统错误 1: 除于 0运算。
- e) 系统错误 2: 负数的开根号。

◆ 错误指示

- a) 输入错误:显示最先输入的 12 位整数,以及错误标志 E。
- b) 粗略估算错 1 和 2: 显示 12 位粗略估算结果以及错误标志 E。
- c) 系统错误 1: 显示 0以及错误标志 E。
- d) 系统错误 2: 显示负数绝对值的开根号运算结果以及错误标志 E。

◆ 错误消除

- a) 输入错误: 按 ON/C、CE/C/ON、CE 键。
- b) 粗略估算错误 1: 按 ON/C、CE/C/ON、CE 键。
- c) 粗略估算错误 2: 按 ON/C、CE/C/ON 键。
- d) 系统错误 1 和 2: 按 ON/C、CE/C/ON 键。

3.3、直流参数

除非另有规定, T_{amb}= 25℃, V_{DD}= 1.5V, GND=0V

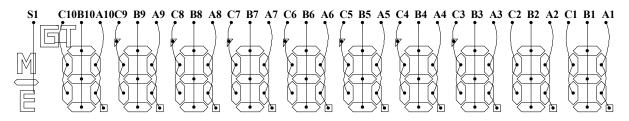
会 粉 勾 秭	符号测试条件	规 范 值		并			
参数名称		例	最小	典型	最大	单位	
工作电压	V_{DD}	-	1.1	1.5	1.8	V	
显示电流	I_{DIS}	V _{DD} =1.5V (no key in, display 0)	-	5.0	9.0	μΑ	
关机电流	I_{OFF}	$V_{DD}=1.5V (OFF)$	-	-	1.0	μΑ	3
输入高电平1	$V_{IH(1)}$	K3~K10, RESET	$V_{\rm DD}$ -0.4	-	V_{DD}	V	
输入低电平	V_{IL}	K3~K14, RESET	0	-	0.4	V	
输入高电平 2	$V_{\rm IH(2)}$	K11~K14	V _{PP} -0.4	-	V_{PP}	V	
"M"输出电平	V_{COM}	COM1~COM3	$V_{\rm DD}$ -0.2	-	V _{DD} +0.2	V	
输出高电平1	$V_{\mathrm{OH}(1)}$	SEGMENT COM1~3	V _{PP} -0.2	-	V_{PP}	V	
输出低电平	V _{OL}	SEGMENT, COM1 \sim 3, K1 \sim K14	0	-	0.2	V	1
输出高电平 2	$V_{\mathrm{OH}(2)}$	K1~K10	V _{DD} -0.2	-	V_{DD}	V	
显示频率	Fdis	V _{DD} =1.5V COM1 频率	35	50	90	Hz	

4、操作范例

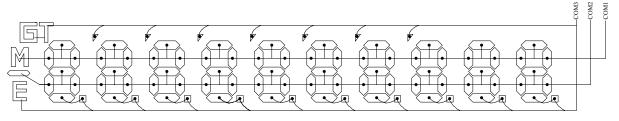
如无特殊说明, 各开关 option 分别如下选择: K14-B2、K13-B3、K12 悬空、K11 悬空;

	计算	操作	显示
	1-3=-2	1 -	1.
		3 =	-2.
+	(-2) x 4=-8	C	0.
		2 ±	-2.
-		×	-2.
		4 =	-8.
×	365÷7=52.1428571428	C	0.
		365 [÷	365.
÷		7 =	52.1428571428
	3145×200=629000	C	0.
		3145 x	3'145.
		200 =	629'000.

DL5651 10/12 位计算器

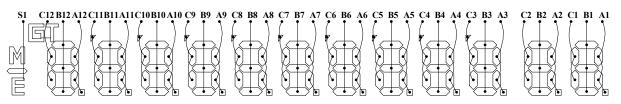

	计算	操作	显示
	3 ³ =27	3 🔀	3.
X n			9.
			27.
1/X	1/4=0.25	4 🔃	4.
			0.25
	123×456=56088	123 🔀	123
CE		756 CE	0.
		456	56'088.
	456/789×100=57.794676806	456	456.
		789 %	57.794676806
	3000+(3000×11%)=3330	3000 🗵	3'000.
		11 %	330.
%		\Box	330.
			3'330.
	3000-(3000×11%)=2670	3000 🗵	3'000.
		11 %	330.
			330.
			2'670.
	123×45= 5535	123 🔀	123.
M+	<u>+) 234×56=13104</u>	45 <u>M+</u>	M 5'535.
	18639	234 🔀	M 234.
M-	<u>-) 345×67=23115</u>	56 <u>M+</u>	M 13'104.
	-4476	MR	M 18'639.
RM		345 ⋉	M 345.
		67	M 67.
CM		M-	M 23'115.
		<u>CM</u>	23'115.
MU	95÷(1-5/100)=100	95 🗦	95.
		5 MU	100.
		MU	5.

	计算	操作	显示
	$\sqrt{25} = 5$	25	25.
$\sqrt{}$		$\sqrt{}$	5.
	$6 \times \sqrt{9} \div 2 = 9$	6 ×	6.
		9 🗸	3.
		$\overline{\cdot}$	18.
		2 =	9.
EX	3	1 🛨	1.
	1+2+3+4	2 🛨	3.
	= 0.3	3 🛨	6.
		4 🛨	10.
			10.
		3	3.
		EX =	10. 0.3
		100 +	100.
	100+200=300 ①	200 GT+	GT 300.
GT	300×12=3600 ②	300 ×	GT 300.
	5000÷5=1000 ③	12 GT+	GT 3'600.
	Grand Total=4900 ④	5000 ÷	GT 5'000.
		5 GT+	GT 1'000.
		RGT	GT 4'900.
	123+45=168	123 +	123.
→		455	455.
		→	45.
			168.
	100+200=300 ("+" ①, "=" ②)	100 +	100.
	2×5=10 ("=" (3)	200	300.
IC	3-7=-4 ("-" ①, "=" ②) 2÷4=0.5 ("=" ③)	<u>IC</u>	2.
	2-4=0.5 (= 3)	5	2. 5.
	(数于) 与业小 化 计数值的文化过程/		10.
		IC	3.
			3.
		7	7.
			-4.
		IC ÷	2.
			2.
		4	4.
			0.5
		IC	3.

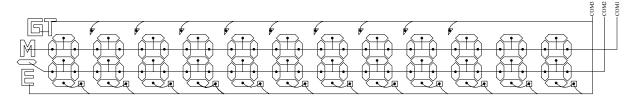

5、LCD 连接图

- 5.1 不带运算符号显示
 - 10 位选择

Segment

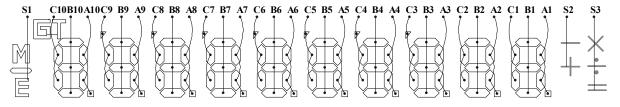


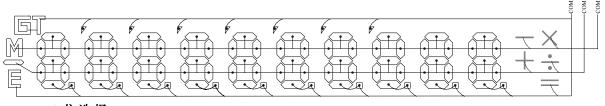
Common



● 12 位选择

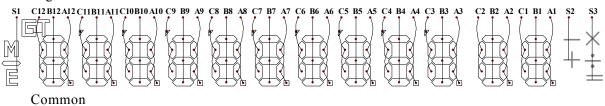
Segment

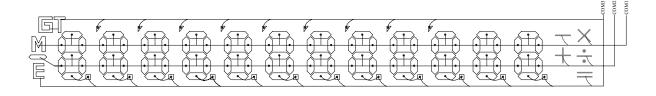

Common

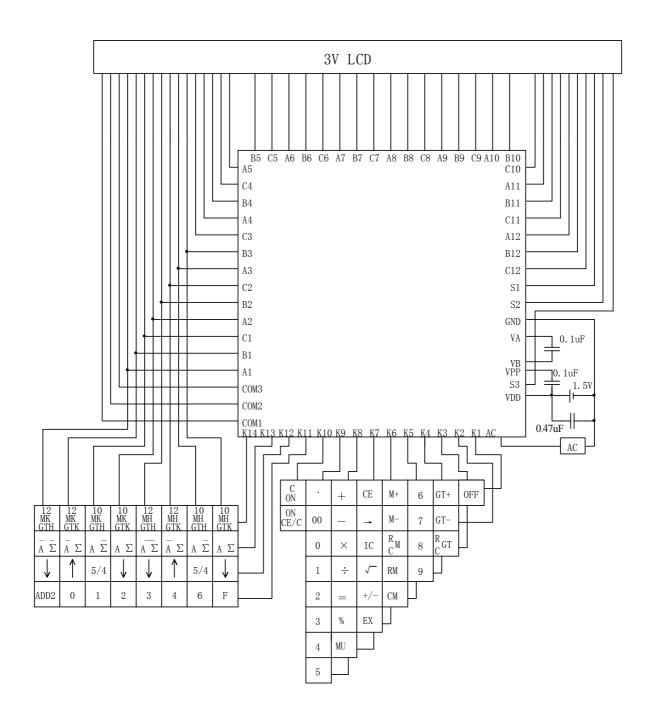

5.2 带运算符号显示(

● 10 位选择

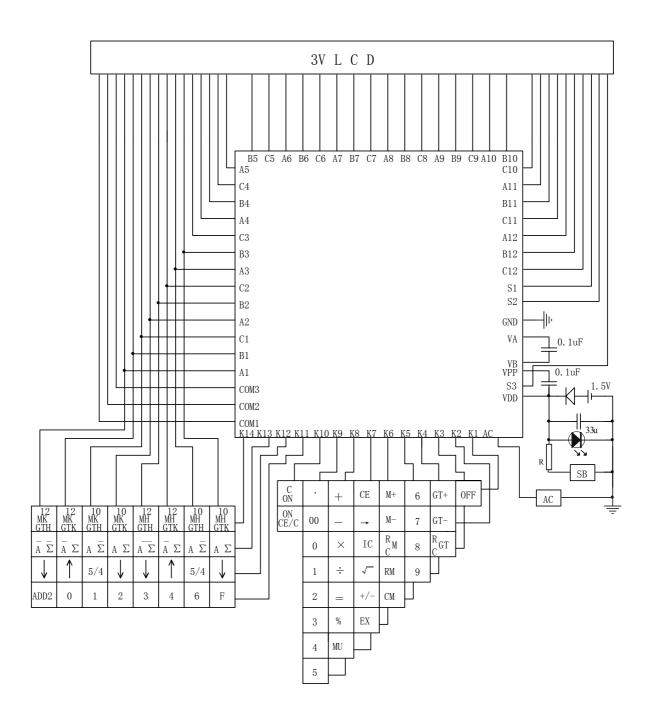
Segment

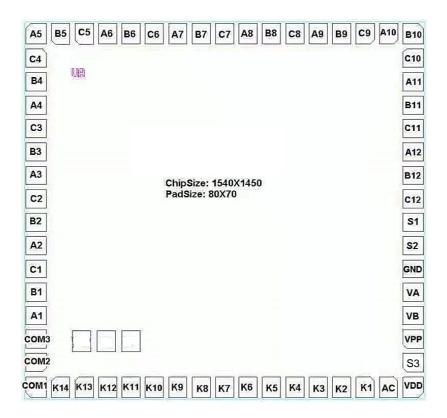



Common


● 12 位选择

Segment




- 6、典型应用线路与应用说明
- 6. 1、单电池应用图

6. 2、双电池应用图

8. Pad Assignment:

IC衬底接GND

PCB 画板和邦定注意事项

- 1、PCB 的焊盘处的线宽和线距尽量小,焊盘排列更紧靠,邦线拉的角度就越小,焊头就更不会短路。
- 2、PCB 上的焊点和对应 IC 的 PAD 脚要在同一边,如果不在同边,邦线要转弯,会容易脱线和短路。
- 3、画 PCB 的 IC 衬底尺寸要与 IC 的实物面积基本一样大,这样会有助于粘 IC 的工人识别放置位置,不会因摆偏位置而造成邦定难度加大。
- 4、一个 IC 和 PCB 板好不好邦定, PCB 设计人员在画邦定图的时候就可以模拟出效果并判定出来,由于 PCB 画图是 1: 1 的尺寸大小,所以只要把 IC 的 PAD 图也画成 1: 1 的尺寸大小,那么画出的邦线效果就和生产的邦线效果基本一致了(我司可为 PCB 厂家提供 IC 1: 1 比例的 PAD 图)。

以下为邦线注意事项:

- 1、粘 IC 要放正,不要因为摆偏位置而造成邦定难度加大。
- 2、由于 PAD 焊点面积较小且距离较近,需调整邦机时间和功率大小,不要让邦线焊点 打的太扁太宽,否则容易造成焊点间的短路。
- 3、请使用 1.0 或以下的铝线(即正常情况下选细一些的线), 邦机选用 520 或 530.