DL2320 两键电容式触摸芯片

目录

1.	概述概述	3
2. .	主要性能	3
3. ,	应用范围	3
4.	封装及脚位说明	4
5.	电气参数	5
·	5. 1 DC/AC	5
ļ	5.2 最大绝对额定值	5
6.	功能描述	6
7.	参考电路	7
8.	布板建议	8
9.	封装尺寸图	9
10		9

1. 概述:

DL2320X 是一款具有较强抗干扰能力、工作电流小等特点的两键电容式触摸感应 IC。

2. 主要性能:

- 工作电压: 2.4V-5.5V(内置1.9V的LVR).
- 工作电流: 3.5uA@VDD=3.0V
- 低功耗电流: 1.8uA@VDD=3.0V
- 响应时间:工作模式小于60ms,低功耗模式小于120ms.
- 由外接电容CS(OpF-30pF)调整灵敏度,电容越大灵敏度越低.
- 内置2.3V的LDO.
- 固定为多键模式输出.
- 可选择低电平有效或高电平有效输出.
- 芯片初始上电需要0.5s的初始化稳定时间,此期间内不要触摸PAD,此时所有功能禁止.
- 工作模式下12s内无触摸操作,则自动进入低功耗模式.
- 自带长按10s复位功能.
- SOT23-6封装.

3. 应用范围:

- 移动电源,电子烟,电子称等电池供电产品。
- 台灯, 手电筒等LED照明产品。
- 手环系列产品。

4. 封装及脚位说明:

管脚说明

脚位	代号	输入或输出	功能说明
1	OUT0	输出	对应Touch KeyO输出电平选择
2	VSS		电源负极
3	OUT1	输入	对应Touch Key1输出电平选择
4	KEY1	输入	触摸按键输入脚
5	VDD		电源正极
6	KEYO	输入	触摸按键输入脚

5. 电气参数:

5.1 DC/AC 特性: (测试条件为室内温度=25℃)

项目	符号	测试条件	最小	典 型	最大	单位
工作电压	Vdd		2. 4	3.0	5. 5	V
工作由法	Ind	Vdd=3V, 无负载		3. 5		UA
工作电流		Vdd=5.0V, 无负载		5. 0		UA
+/	Isd	Vdd=3.0V, 无负载		1.8		UA
静态电流		Vdd=5.0V, 无负载		2. 5		UA
高电平 输出电压			0.8*Vdd	Vdd		V
低电平 输出电压				0	0.2*Vdd	V
I/0驱动电流	Isource			4		MA
I/0灌电流	Isink			8		MA

5.2 最大绝对额定值

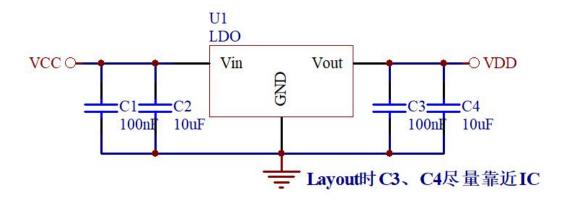
参数	符号	条件	值	单位		
工作温度	Тор		-20°C+70°C	${\mathbb C}$		
存储温度	Tstg		-65°C+150°C	$^{\circ}$		
供应电压	Vdd	Ta=25° C	Vss-0.3Vss+5.5	V		
输入电压	Vin	Ta=25° C	Vss-0.3Vss+0.3	V		
备注: VSS表示系统接地						

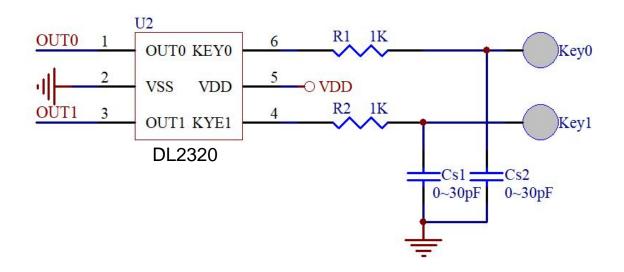
6. 功能描述

A:DL2320B1: COMS输出模式,无按键输出低电平,有按键输出高电平;

B:DL2320C1: CMOS输出模式,无按键输出高电平,有按键输出低电平;

C:DL2320D1: NMOS输出模式,无按键输出高阻态,有按键输出低电平;


▶ 触摸键长按最大时间


触摸键长按超时,会产生按压复位,最大时间为10秒。

> 工作模式和低功耗模式

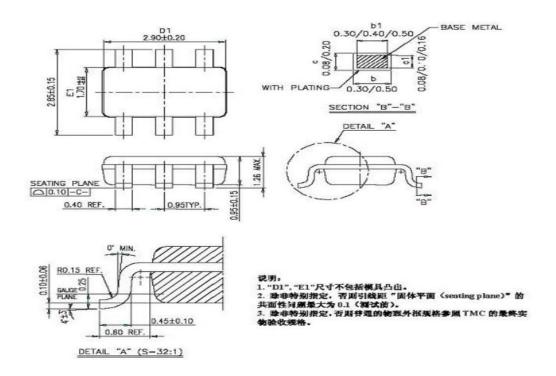
芯片上电或复位即进入工作模式,当12秒内无触摸操作后,则自动进入低功 耗模式,芯片检测到Kev引脚的电容变化后,会从低功耗模式切换到工作模式。

7. 参考电路

说明:

- 1. CS 电容与灵敏度的关系:
 - a. CS 电容越小,灵敏度越高, CS 电容越大,灵敏度越低。
 - b. CS 的电容值是 0pF-30pF, 参考电容 CS 选用 5pF。
 - c. 由于 CS 是量测的电容,要选择对温度变化系数小,容值特性稳定的电容材质,所以须使用 NPO 材质电容或 X7R 材质电容;若是插件电容,使用涤纶电容为好。
- 2. 在触摸管脚与按键 KEY 之间,可以串接一个电阻来高抗干扰及防静电效果,阻值一般 100R-10K 之间,常用 1K 电阻, Layout 时尽量靠近触摸

8. 布板建议书


触摸芯片的布板建议书

- 1. 电源的布线(Layout)方面,首先要以电路分块划分,触摸 IC 能有独立的走线到电源正端,若无法独立的分支走线,则尽量先提供触摸电路后在连接到其他电路。接地部分也相同,希望能有独立的分支走线到电源的接地点,也就是采用星形接地,如此避免其他电路的干扰,会对触摸电路稳定有很大的提升效果。
- 2. 单面板 PCB 设计,建议使用感应弹簧片作为触摸盘,一带盘的弹簧片最佳,触摸盘够大才能获得最佳的灵敏度。
- 3. 若使用双面板 PCB 设计,触摸盘(PAD)可设计为圆形或方形,一般建议 12mm*12mm,与 IC 的连线应该尽量走在触摸感应 PAD 的另外一面,同时连接线应该尽量细,也不要绕还路。
- 4. PCB 和外壳一定要紧密的贴合,若松脱将造成电容介质改变,影响电容的量测,产生不稳定的现象,建议外壳与 PAD 之间可以采用非导电胶黏合,例如压力力与 3M KBM 系列。
- 5. 为提高灵敏度整体的杂散电容要越小越好,触摸 IC 接脚与触摸盘之间的走线区域,在正面与背面都不铺地,但区域以外到 PCB 的周围则希望有地线将触摸的区域包围起来,如同围墙一般,将触摸盘周围的电容干扰隔绝,只接受触摸盘上方的电容的电容变化,地线与区域要距离 2mm 以上。触摸盘 PAD 与 PAD 之间距离也要保持 2mm 以上,尽量避免不同 PAD 的平行引线过近,如此能降低触摸感应 PAD 对地的寄生电容,有利于产品灵敏度的提高。
- 6. 电容式触摸感应式将手指视为导体,当手指靠近触摸盘时会增加对地的路径使杂散电容增加,以此侦测电容的变化,以判断手指是否有触摸。触摸盘与手指所构

成的电容变化与触摸外壳的厚度成反比,与触摸盘和手指覆盖的面积成正比。

7. 外壳的材料也会影响灵敏度,不同材质的面板,其介电常数不同,如玻璃>有机玻璃(亚克力)>塑胶,在相同的厚度下,介电常数越大则手指与触摸盘间产生的电容越大,量测时待测电容的变化越大越容易承认按键,灵敏度就越高。

9. 封装尺寸图 (SOT23-6)

