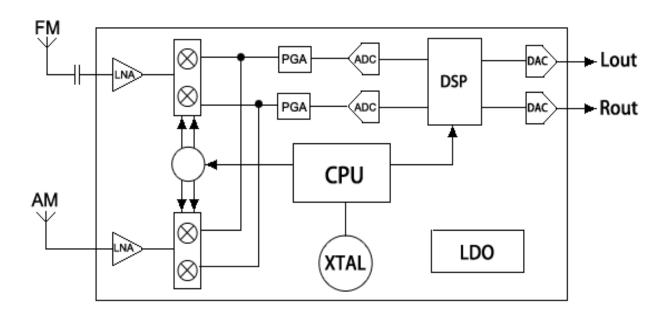
1. Description

C1028 is PLL free debugging single radio chip with FM / AM / SW / LW multi-band. Thanks to its monolithic integrated frequency synthesizers, radio frequency front end and MPX decoder, this chip implements all receiver function from wireless input to audio output, eliminating the correction in the weeks of complex peripheral circuit and complex debugging correction production process.

C1028 chip integrates a high-performance low intermediate frequency digital audio DSP, so that the chip has an excellent sound quality in various receiving condition.

C1028 chip with AFC function so that make it an excellent performance and flexibility. C1028 chip can work from 2.0V to 3.6V Wide supply voltage range.

1.1. Features


- monolithic integrated FM/AM/SW/LW radio receiver
- & extremely low power consumption
 - power consumption in FM mode is less than 35mA
 - power consumption in AM mode is less than 25mA
- Worldwide FM/AM/SW/LW band support
 - AM band within 520 -1710KHz
 - FW band within 87 -108MHz
 - Single FW band within 64 -108MHz SW band within 2.2MHz-22.85MHz LW band within153KHz-288KHz
- Integrated digital low-IF tuner
 - Transducers under the suppression of mirror
 - high performance A/D converter

- fully integrated digital frequency synthesizers
 - Fully integrated on chip RF VCO
 - fully integrated on chip loop filter
 - support manual tuning
- support 32.768KHz crystal oscillator
- automatic frequency control (AFC)
- support digital automatic gain control
- digital adaptive noise cancellation
 - mono/stereo automatic switch
- FM / AM frequency band selection for each region
- Support 1-8 shortwave mode
- support short arbitrary band selection
- package types: SSOP24(RoHS)

1.2. Applications

- Desktop and portable radio
- CD/DVD player
- Mini audio
- Entertainment system
- Toys or gifts

2. Functional diagram

(Figure 1. C1028 Functional diagram)

3. Function Description

3.1. Overview

C1028 is a highly integrated single-chip PLL FM / AM / SW / LW receiver chip, which can realize the flexible radio receiver scheme, greatly minimizing the peripheral device chip, reducing the BOM and the cost of application, more convenient for factory production.

3.2. FM Receiver

C1028 chip using low-IF architecture, avoiding the image rejection problems which were brought by direct frequency conversion, reducing the cost and complexity of the applications effectively. C1028 chip integrates the FM low-noise amplifier (FM_LNA) for which support the single-band (64 to 108MHz), a orthogonal image rejection mixer, a programmable gain amplifier (PGA), a high-resolution analog to digital converters, an audio DSP and a high-fidelity digital to analog converter (DAC).

FM_LNA amplifying the RF signal and converting it to differential signal; the orthogonal image rejection mixer change the frequency of FM-LNA differential RF signal to low-IF signal, and complete image rejection function at the same time; PGA enlarge orthogonal image reject the IF signal which were outputted by the mixer, then changing the low-IF signal which were outputted by PGA through ADC to digital signal, sending to the audio DSP for subsequent processing.

The DSP audio complete the channel selection, FM demodulation, decoding MPX stereo and audio signal output. MPX decoder can automatically complete stereo / mono switch to reduce the output noise.

3.3. AM Receiver

C1028 chip using digital low-IF architecture, supports the global AM band which the frequency ranging from 520 kHz to 1710 kHz. The AM reception of C1028 chip only requires minimal external components, and does not need manual adjustment. Digital low-IF architecture enables C1028 chip having high accuracy filter, excellent selectivity and signal to noise ratio throughout the whole AM band. Similar to the FM receiver phase, the AM receiver of C1028 -chip receiver optimized the sensitivity of the receiver and the suppression for strong interference signal, making the receiver of weak signal radio easier. To provide the maximum flexibility, C1028 chip supports ferrite coil magnet of wide range. C1028 chip can also increase the effective inductance of the loop antenna through a transformer.

3.4. SW/LW Receiver

C1028 chip supports eight shortwave bands range from 2.2MHz to 22.85 MHz . Also supports arbitrary frequency range of frequency selection. The characteristics of shortwave reception of C1028 chip has few external discrete devices and does not require factory calibration. C1028 chip also supports the application of FM antenna to receive shortwave signals. LW band supports frequency range from 153KHz to 288KHz.

3.5. Frequency Synthesizer

The vibration signal generated from frequency synthesizer is input to a quadrature mixer, RF signal down-conversion to low intermediate frequency signal of fixed frequency.

4. Electrical Specification

Table 1: Operation Condition

Parameter	Symbol	Operating Condition	Min	Тур	Max	Units
Power Supply	AVDD	Relative to GND	2.0	3.3	3.6	V
Ambient Temperature	Ta		-15		+85	$^{\circ}\!\mathbb{C}$

Table 2: DC Characteristics

Para	meter	Symbol	Test/Operating Condition	Min	Тур	Max	Units
Current	FM Model	I _{FM}			35		mA
Consumption	AM Model	I _{AM}			25		mA
	SW Model	I _{SW}			35		mA
	LW Model	I_{LW}			25		mA
VDD Po	wer Down	I _{PD}			30		μA

(Table 3: FM Receiver Characteristics)

(VDD = 3.0 V, Ta = 0 to 45 °C)

ITEMS	Test/Operating Condition	TYP	Units
Frequency Coverage Range	Low	87	MHz
	High	108	MHz
Sensitivity For 30dB S/N	90 MHz	15	dB
	98 MHz	15	dB
	106 MHz	15	dB
S/N Ratio 60dB Input	98 MHz	54	dB
3dB Limiting Sensitivity	98 MHz	14	dB
AFC Holding Range	98 MHz	+-50	KHz
AM Suppression 60dB Input	98 MHz	45	dB
Distortion 60db Input	98 MHz	0.5	%
Overload THD.75 KHz Dev.	98 MHz	0.3	%
Power Output 10% T.H.D.(MOD=75KHz)	98 MHz	175	mVrms
Max.Power Output (MOD=75KHz)	98 MHz	175	mVrms
No Signal Current		13	uA
Current Drain Current at OutPut		35	mA
Modulation Hum. (100dB)		1.5	mV
Frequency Response 1mV Input with	High	5	KHz
1KHz=0dB (-6dB)	Low	80	Hz
Level Difference Mono/Stereo	98 MHz	0	dB
Sens.For Stereo Indicator On	98 MHz	22	dB
Channel Balance	98 MHz	0.2	dB
Separation 1KHz	98 MHz	50	dB

NOTE:

- 1. Frequency is 87~108 MHz.
- $2. \quad V_{EMF} = 1 \text{ mV}.$
- 3. FMOD = 1 kHz, MONO, and L = R unless noted otherwise.
- 4. $\Delta f = 22.5 \text{ kHz}.$
- 5. |f2 f1| > 2 MHz, $f0 = 2 \times f1 f2$.
- 6. BAF = 300 Hz to 15 kHz, A-weighted.
- 7. At LOUT and ROUT pins.
- 8. f = 75 kHz.

(Table 4: AM Receiver Characteristics)

$(VDD = 3.0 \text{ V}, Ta = 0 \text{ to } 45 ^{\circ}\text{C})$

ITEMS	Test/Operating Condition	TYP	Units
Frequency Coverage Range	Low	520	KHz
	High	1710	KHz
Sensitivity For 20dB S/N	600 KHz	83	dB/m
	1000 KHz	83	dB/m
	1400 KHz	83	dB/m
S/N Ratio (5mV/m)	1000 KHz	40	dB/m
A.G.C -10dB (100mV/m)	1000 KHz	50	dB/m
Selectivity ±9KHz	1000 KHz	18	dB/m
Band width (-6dB)	1000 KHz	12	KHz
Power Output 10% T.H.D. (Mod=80%)	1000 KHz	170	mVrms
Max. Power Output (Mod=80%)	1000 KHz	170	mVrms
Distortion 30% MOD.74dB INPUT	1000 KHz	0.5	%
Frequency Response -6dB	Low	2.8	KHz
5mV/m Input 1KHz=0dB	High	80	Hz
Min. Volume Output		0.2	mV
Modulation Hum. (100dB)		4	mV
No Signal Current		10	uA
Current Drain Current at MAX. Output		23	mA

NOTE:

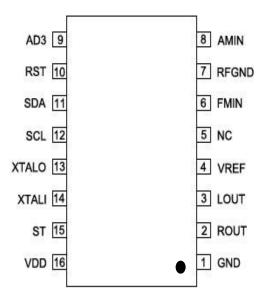
- 1. Volume = maximum, for all tests. Tested at RF = 520 kHz.
- 2. FMOD = 1 kHz, 30% modulation, 2 kHz channel filter.
- 3. BAF = 300 Hz to 15 kHz, A-weighted.
- 4. VIN = 5mVrms.
- 5. Stray capacitance on antenna and board must be < 10 pF to achieve full tuning range at higher inductance levels.

(Table 5.SW Receiver Characteristics)

(VDD = 3.0 V, Ta = 0 to 45 °C)

ITEMS	Test/Operating Condition	TYP	Units
Frequency Coverage Range	Low	9.0	MHz
	High	22	MHz
Sensitivity For 20dB S/N	9.5 MHz	13	dB
	15MHz	13	dB
	20 MHz	13	dB
S/N Ratio 74dB Input	15 MHz	>35	dB
A.G.C -10dB (100mV/m)	15 MHz	40	dB
Selectivity ± 9KHz	15 MHz	±10	dB
Band width (-6dB)	15 MHz	3- 6	KHz
Power Output 10% T.H.D. (Mod=80%)	15 MHz	50 ~ 100	mVrms
Max. Power Output (Mod=80%)	15 MHz	50 ~ 100	mVrms
Distortion 30% MOD.74dB INPUT	15MHz	< 1	%
Modulation Hum. (100dB)		< 5	mv
Max Volume output		30	mv
Min. Volume Output		0.5	mv
Frequency Response -6dB	High	2.8	KHz
5mV/m Input 1KHz=0dB	Low	80	Hz
No Signal Current		< 20	uA
Current Drain Current at MAX. Output		20~30	uA
Spurious Frequency Rejection Ratio		9 ~ 18	dB
NOTE:			

(Table 6.LW Receiver Characteristics)


 $(VDD = 3.0 \text{ V}, Ta = 0 \text{ to } 45 ^{\circ}\text{C})$

ITEMS	Test/Operating Condition	TYP	Units
Frequency Coverage Range	Low	153	KHz
	High	288	KHz
Sensitivity For 20dB S/N	162 KHz	92	dB/u
	216 KHz	92	dB/u
	279 KHz	92	dB/u
S/N Ratio (74dB/m)	216 KHz	40	dB
A.G.C -10dB (100mV/m)	216 KHz	40	dB
Selectivity ±9KHz	216 KHz	±10	dB
Band width (-6dB)	216 KHz	3 - 6	KHz
Power Output 10% T.H.D. (Mod=80%)	216 KHz	50 ~ 100	mVrms
Max. Power Output (Mod=80%)	216 KHz	50 ~ 100	mVrms
Distortion 30% MOD.74dB INPUT	216 KHz	<1	%
Frequency Response -6dB	Low	2.8	KHz
5mV/m Input 1KHz=0dB	High	80	Hz
Min. Volume Output		0.5 ~ 2.0	mV
Current Drain Current at MAX. Output		23	mA

Rev.1.2

8

5. Chip pin description

(Table 7. C1028 Chip pin description)

Pin	Pin Name	Description	
1	GND	GND	
2	ROUT	Right output	
3	LOUT	Left output	
4	VREF	Voltage Detection	
5	NC	NC	
6	FMIN	FM RF input	
7	RFGND	RFGND	
8	AMIN	AM RF input	
9	AD3	State detection	
10	RST	Reset	
11	SDA	IIC SDA	
12	SCL	IIC SCL	
13	XTALO	crystal oscillator output	
14	XTALI	crystal oscillator input	
15	STEREO	stereo	
16	VDD	VDD	

(Table 8. Regional frequency range selection table)

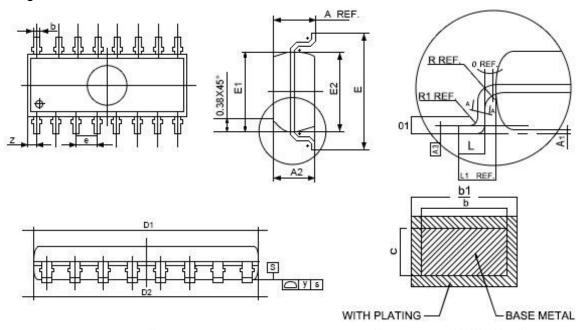

Radio station area	Countries or regions	Hand tuning frequency width limit	
		AM Lower:	522 KHz ;
EUR	Furana / Karaa / Taiwan	AM Upper:	1620 KHz
EUR	Europe / Korea / Taiwan	FM Lower:	87.0MHz ;
		FM Upper:	108.0 MHz
		AM Lower:	520 KHz ;
USA	LLC A Canada & Latin America	AM Upper :	1710 KHz
USA	U.S.A., Canada & Latin America	FM Lower:	87.0 MHz ;
		FM Upper:	108.0 MHz
		AM Lower:	522 KHz ;
JPN	Japan (without T\/ Band\	AM Upper :	1629 KHz
JPN	Japan (without TV-Band)	FM Lower:	76.0 MHz ;
		FM Upper:	90.0 MHz
	Japan (with TV Dand TV4 TV2 9 TV2)	AM Lower:	522 KHz ;
JTV		AM Upper :	1629KHz
310	Japan (with TV-Band TV1, TV2 & TV3)	FM Lower:	76.0 MHz ;
		FM Upper:	108.0 MHz
		AM Lower:	522 KHz ;
RUS	Russia	AM Upper :	1620 KHz
I KUS	Russia	FM Lower:	64.0 MHz ;
		FM Upper:	108.0 MHz
		AM Lower:	531 KHz ;
AUS	Australia, New Zealand & S. Africa	AM Upper :	1602KHz
AUS	Australia, New Zealand & S. Amca	FM Lower:	87.5 MHz ;
		FM Upper:	108.0 MHz
		AM Lower:	522 KHz ;
EUR2	LINIUSED/Clobal)	AM Upper :	1620KHz
LUKZ	UNUSED(Global)	FM Lower:	87.5 MHz ;
		FM Upper:	108.0 MHz

SW frequency range selection:

SW1	2.20 - 4.36 MHz	SW5	11.60 - 13.85 MHz
SW2	4.50 - 6.25 MHz	SW6	15.05 - 15.65 MHz
SW3	6.75 - 7.65 MHz	SW7	17.50 - 19.98 MHz
SW4	9.50 - 10.50 MHz	SW8	21.40 - 22.85 MHz

Note: Customers can choose frequency range randomly according to their own requirements.

6. Typical application circuit of AM/FM two band



(Table 9. Typical application schematic diagram)

Note: The above demonstration circuit is for the C1028 chip reference design circuit, Our company reserves the right to modify the circuit. When entering the normal product design, please obtain the latest information from our engineering staff.

7. Package

Package dimensions: SOP 16

Symbol Min Nom Max 1.500 Α 1.600 1.700 0.150 0.200 A1 0.100 A2 1.400 1.450 1.500 0.223 A3 0.356 0.406 0.456 b 0.486 b1 0.366 0.426 C 0.203 **D1** 9.700 9.900 10.10 D2 9.950 10.15 9.750 5.900 6.000 E 6.100 3.800 E1 3.900 4.000 E2 3.850 3.950 4.050 е 1.270 0.700 0.600 0.660 L 0.950 1.050 1.150 L1 0.200 R 0.300 R1 8° Θ 0 0 01 10° y 0.1 Z ____ 0.505 -----

SECTION

Note:

 All dimension are in mm;
 Dim D1/D2 & E1/E2 does not include plastic flash;
 flash: Plastic residual around body edge after dejuk/singulation.

3. Dim b does not include dambar protrusion/intrusion.

4. Plating thickness 0.005-0.015 mm.

(Table 10.SOP 16 package dimension)

)